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The theory developed by Madden and Glandt [J. Stat. Phys. 51, 537 (1988)] for fluids in disordered mi-
croporous matrices is extended. A perturbation theory approach is used to obtain the free energy of the
confined fluid, with the interparticle potential as the perturbation variable. The theory is combined with
a mean-field approximation and applied to a system of square-well particles for which vapor-liquid coex-
istence envelopes are obtained. The effects of matrix density on the coexistence properties are explored,
and a comparison is done with previous experiment and lattice modeling.

PACS number(s): 05.70.Fh, 61.20.Gy, 64.10.+h, 64.70.Fx

I. INTRODUCTION

The behavior of fluids confined in disordered micro-
porous materials is a subject of great interest. Much ex-
perimental work has been done in an attempt to under-
stand the effects of such host media on the phase transi-
tions of binary mixtures [1]. The liquid-vapor phase tran-
sition of pure *He in a silica aerogel was studied by Wong
and Chan [2]. They discovered that the coexistence
curve of the confined fluid was markedly different from
that of the bulk: the curve was an order of magnitude
smaller in width and the critical temperature was slightly
depressed. Theoretical studies of confined fluids have
generally been limited to either “single pore” models [3],
which lack the ability to represent a truly disordered
structure, or lattice models [4]. Madden and Glandt [5]
have introduced a continuum model for a fluid in a
porous material which seems well suited for application
to these problems.

Madden and Glandt [5] have addressed the problem of
calculating the structure of a fluid equilibrated within a
disordered microporous solid, viewed as a rigid matrix of
interaction sites. In their formalism, the fluid-matrix sys-
tem is treated essentially as a binary mixture, with the
stipulation that the matrix structure is completely
unaffected by the presence of the imbibed fluid. Structure
in this system is described by correlation functions analo-
gous to those used in equilibrium liquid-state theory.
Ford and Glandt [6] and Rosinberg, Tarjus, and Stell [7]
have shown that these correlation functions can be used
to calculate thermodynamic properties of the fluid in the
matrix, in ways similar to those used in equilibrium
liquid-state theory. For practical reasons, the usefulness
of these routes to the thermodynamics is often limited to
very simple interparticle potential models [6]. It is there-
fore desirable to develop a perturbation theory approach
to the calculation of thermodynamic properties, treating

more realistic potentials as perturbations of simpler ones.
|

We introduce such a theory in this paper, which is organ-
ized as follows. Section II provides background on the
Madden-Glandt formalism, Sec. III gives the perturba-
tion theory derivation, Sec. IV describes a model poten-
tial to which the theory is applied, Sec. V shows the re-
sults of these calculations, and Sec. VI discusses the re-
sults and possible future directions.

II. FLUID-MATRIX SYSTEMS

As mentioned previously, the Madden-Glandt view of
a fluid-matrix system is that of a binary mixture where
one component is completely quenched and thus immo-
bile [S]. The correlation functions used to describe struc-
ture are analogous to those used for equilibrium fluids;
the pair correlation functions p,,(r;,r,) give the probabil-
ity density for simultaneously finding a particle of species
a within dr of r; and a particle of species ¥ within dr of
r,. The matrix is regarded as being produced by an in-
stantaneous thermal quench of a fluid in equilibrium at a
higher temperature, and thus having a pair correlation
function identical to that of such a fluid. For simplicity
we neglect the restructuring of the matrix during quench-
ing. This assumption does not affect the essential physics
of the results reported below. For further convenience, in
this paper we will present results only for statistically
homogeneous systems, (i.e., having no external fields ex-
cept that produced by the matrix itself) and spherically
symmetric interparticle potentials. In such cases, the
simplification pg, (r,,1,)=pg, (|r;—1,])=p,,(r) can be
made.

The total correlation functions A, (r) are trivially re-
lated to the p,,(r) by h,, (r)=p,(r)/(pp,)—1, where
p, is the number density of species o. Using standard
techniques of topological reduction [8], Madden and
Glandt found the total correlation functions for a fluid-
matrix system to be

h 4, = {the sum of all topologically distinct, simple, connected graphs with one root

1-point of species a, one root 1-point of species ¥, some or no fluid field

(1)

Pr points, some or no obstacle field p,, points, and some or no f bonds

between the appropriate pairs of points, with no articulation points and no shielding sets} .
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Here a and y represent either of the components, f (for a
fluid particle), or m (for a matrix obstacle). There are
three types of Mayer f bonds present; they are related to

the pairwise interaction potentials ¢, by
frr=exp{—Bds}—1, fim=exp{—Bdsm}—1), and
SFom =€Xp{ —Brbmm}—1. Here B=(kT)"' and

B, =(kT,, )~1, where T is the temperature at which the
total system now exists while T,, is the temperature at
which the matrix component was equilibrated before the
thermal quench. A shielding set is defined as a set of ob-
stacle points (root and/or field) whose removal would
disconnect a graph into fragments, at least one of which
is no longer connected to a root and contains at least one
fluid point. The restriction of no shielding sets in Eq. (1)
is what differentiates these correlation functions from
those of a true equilibrium binary mixture. Physically,
this restriction guarantees that the matrix particles do
not rearrange when fluid is introduced.

Madden and Glandt [5] also generated a set of
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Ornstein-Zernike equations for the correlation functions.
Given and Stell [9] showed that this set of equations was
not completely consistent with the correct topological
specifications given in Eq. (1) and presented a corrected
set, derived from a different formalism, termed the “repli-
ca Ornstein-Zernike (ROZ) equations”:

R =Crim TP m Conm® P 5 ()
Bim =Cm Tt PmCrm®Pmm TPsCOR s 3)
her=crrtPmCimOhmstprcohs+prcyoh, , (4)
h.=c.+pscoh, , (5)
hyp=hc.thy (©)
crr=c.tep (7)

where o denotes a convolution. Here the direct correla-
tion functions are defined in the usual way:

€y = {the sum of all graphs in ,, with no nodal points} . (8)

The correlation functions with subscript b are defined as

h, = {the sum of all graphs in h;, such that all paths between the two fluid root

points pass through at least one p,, field point} , 9)
¢, = {the sum of all graphs in c;, such that all paths between the two fluid root
points pass through at least one p,, field point} . (10)

Solving Eqgs. (2)-(7) in an appropriate closure will yield all of the correlation functions. The traditional closures used in
liquid-state theory may be applied to the fluid-matrix system. One of the simplest and most successful closure for
short-range potentials is the Percus-Yevick (PY) closure. For this system we may write it as

Cay=FayVay » (11)

where y,, =[h,, +1]exp(B¢,,). Equation (11) shows that in the PY closure all graphs in ¢, contain an f bond direct-
ly connecting the two roots. Therefore, all of the graphs which make up ¢, are neglected, and Egs. (2)-(7) can be
simplified by setting c, =0. In fact, the set of equations obtained in this approximation is equivalent to the set originally
proposed by Madden and Glandt [5]. Other closures may be used, but in this work we will use only PY.

Madden and Glandt [5] also derived an expression for the excess Helmholtz free energy of the fluid in the matrix

—BAj={the sum of all topologically distinct, simple, connected graphs consisting

of one or more fluid field p, points, some or no obstacle field p,, points ,

and some or no f bonds between the appropriate pairs of points, such that

the diagrams contain at least two points and are free of articulation points

and shielding sets} .

Ford and Glandt [6] and Rosinberg, Tarjus, and Stell [7]
have independently derived a rigorous equation for the
excess chemical potential of the fluid, which may be writ-
ten as
Pr '
Bu§=Bujp,=0)— [ “dpe.(k=0p) , (13)

where €.(k =0;p) is the Fourier transform of ¢, in the

(12)

f

limit of zero wave vector. This is similar to the compres-
sibility equation for equilibrium fluids and was found to
give excellent results when applied to hard-sphere fluids
in hard-sphere matrices [6,10]. In principle, Eq. (13)
could be applied to systems with any reasonable interpar-
ticle potentials. However, it is well known from equilibri-
um liquid-state theory that when using more realistic po-
tentials (e.g., Lennard-Jones), there are regions of state
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space within which no solutions to the Ornstein-Zernike
equations can be found. As a result, large regions of state
space are not amenable to analysis by compressibility
equations like Eq. (13). This is likely also true for the
fluid-matrix system and motivates the development of the
perturbation theory in the next section.

III. PERTURBATION THEORY

We propose that the change in 4f with respect to a
variation in the pair potentials can be expressed as

8(45)= [drd 247 56,0
= I r28¢ff(r1’r2) ¢ff r,1,)

4

54
+2 [drdqy——L—8¢,,(r,,q,) . (14)
8¢ m(riq) /U

Note that the vectors r; denote the coordinates of fluid
particles while the vectors q; denote those of quenched
obstacles. Equation (14) is analogous to the expression
for an equilibrium binary mixture of f and m [8], the only
difference is the absence of a term in 6¢,,,, here. Such a
term should not be included for the present case because
the quenched matrix structure is determined indepen-
dently of the fluid, and a perturbation of the matrix-
matrix potential at this level is not physically meaningful.

The pair correlation functions p,, and p, can be ex-
pressed as functional derivatives of the configurational
free energy

( )=2 o4j
pff r]!rZ 8¢ff(fl,r2) ’
(15)
( )=2 24j
Prm!T1d; 86 1 (T1,q;)

[~BA;1=[—BA5),+ |- 2
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In contrast to the case of an equilibrium binary mixture,
the matrix-matrix pair correlation function p,,,, cannot
be described in an analogous manner. From a graph
theoretical viewpoint, this is due to the fact that all of the
graphs in Af contain at least one fluid field point, while
the graphs in p,,,, do not contain any fluid points. This
reflects the physical reality of a matrix structure which is
completely unaffected by the addition of a fluid.
Equations (15) can be combined with Eq. (14) to yield

8(—BAf)=

N ™

[ dridrpp(1,,5,)86 /(x,,1,)

+zfdl'ldqlpfm (r,q,)8¢ 4, (11q;) | -

(16)

It is desirable to perform a functional integration [11] of
Eq. (16) from a reference system to the system of interest.
To this end, we assume that each of the two full pair po-
tentials can be split into a reference part (subscript o) and
a perturbation (subscript p) part:

b1 =110 T Ss1.00 bm=bsmo T Ssmp - an
If we choose the one-parameter linear scheme
¢ff,a=¢ff,o+a¢ff,pr ¢fm,a=¢fm,o+a¢fm,p , (18)

with a varying from O to 1, then the integration of Eq.
(16) yields

1
_ﬁ ] [fo dafdrldrzpff(r,,r2;¢ff,a)¢ff,p(r1,r2)

1
+2 [ da [dr,dQup (11,0138 im0 mp (T1201) | - (19)
0

Assuming that the full pair potentials can be paramet-
rized as in Eq. (17) and the free energy is known in the
reference system, the free energy of the system of interest
can be found via Eq. (19). Note that in order to calculate
the free energy with this equation, the pair correlation
functions must be obtained for many values of the in-
tegration variable a.

The following mean-field approximation greatly
reduces the computational expense of evaluating Eq. (19)
without sacrificing all of the interesting physics:

PrrenTnd s ) =pr(r))ps(ry) ,
me(fl’Q1;¢fm,a)=Pf(rl )pm(ql) .

(20)

The spatial correlations between particles are thus
neglected when calculating the contribution of the per-
turbative part of the potential. This same assumption is
the basis for the van der Waals equation of state for equi-
librium fluids. Since the pair correlation functions no
longer depend on the parameter a, Eq. (19) can be
simplified to

2
(—BA5)=(—BA5),~B1ELV [drg, o)

+ppmV [drpm (1) [ QD)

for a statistically homogeneous system.
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The chemical potential of the fluid in the matrix will be
of primary interest for the calculation of phase equilibri-
um. Using the definition

BA;
3N,

Buy= , (22)

BV

we may obtain the mean-field theory expression for the
configurational chemical potential of a fluid in a
quenched matrix

BuG=Buso+ps [ dxBb 17, (0)+pp [ AT B,y (1) .
(23)

The total chemical potential is given by By, =PBu% +Byifd,
where ,u‘fd is the chemical potential of a bulk ideal gas at
the same density and temperature as the imbibed fluid.

IV. FLUID-MATRIX MODEL

The matrix structure considered in this paper is that
produced by the instantaneous quench of an equilibrium
fluid of hard spheres of diameter d, at a reduced density
pmd?; the pair density function p,,, is thus identical to
that of such a fluid. The fluid particles have square-well
interactions with both the matrix particles and each other

w0, 0<r<d
O, r>lffd,

(24)
o, 0<r<d

_Efm’ d<r<7kfmd
0, r>}»fmd .

¢fm =

Note that we have chosen the same hard core size d for
the fluid and matrix particles. Also, in this paper we will
only present results for the case where A; =1, =1.25
and €4, /€, =1. The square-well model was chosen as
perhaps the simplest continuum model which exhibits
liquid-vapor equilibrium. It is also convenient because it
is a straightforward perturbation of the hard-sphere po-
tential, and good thermodynamic results have been ob-
tained for hard-sphere fluids in matrices of hard spheres
[6,10]. Using the hard-sphere system as the reference,
Eq. (23) can be “customized” to describe this particular
model:

Uy id kT kT 41 3,43
—=(B[l-_lf )_+(Bﬂc,}{s)——‘_p d’(Asp—1)
€y €y ISy 3P
€
AT A, — DL (25)
3 27

The subscript HS indicates the hard-sphere reference sys-
tem. The quantity By}i is rigorously given by In(p fA}).
However, the thermal de Broglie wavelength A, is a
function only of fluid particle mass and temperature, so
we may make the substitution By,‘,‘-’=ln(p ,d 3) without al-
tering the phase equilibrium calculations in this paper.
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V. RESULTS

The first step in obtaining u, from Eq. (25) is to calcu-
late the residual chemical potential of the hard-sphere
fluid within the matrix Bu} ys. For this purpose, we
chose to use Eq. (13). The c, were calculated from the
ROZ equations (2)-(7) in the PY closure (11) using the
appropriate hard-sphere potentials. The numerical
method of Labik, Malijevsky, and Vonka [12] was used to
solve the ROZ equations; the correlation functions were
discretized using a grid of 2048 points with a spacing of
0.004d. The trapezoidal rule was used to perform the nu-
merical integration in Eq. (13), and the spacing was
Ap;d*=0.01. The chemical potential of the fluid at
infinite dilution in the matrix was calculated from the
Carnahan-Starling expression [13]. More details regard-
ing this type of calculation can be found in Ref. [6].

Once the hard-sphere chemical potential is known as a
function of fluid density, a temperature kT /€ £f can be
chosen and an isotherm of u;/esr vs p,d 3 can be gen-
erated from Eq. (25). An example of such an isotherm is
shown in Fig. 1 for a matrix density of p,,d>=0.1. Note
that the curve has a loop, similar to those seen in the van
der Waals theory of equilibrium fluids, indicating liquid-
vapor coexistence. This loop should be replaced by a
horizontal line joining the two values of p,d 3 at coex-
istence [14]. The coexistence density pair must satisfy the
requirements of equal chemical potential and equal pres-
sure. Using a replica formalism, Rosinberg, Tarjus, and
Stell [7] have derived the correct form of the Gibbs-
Duhem equation for a fluid-matrix mixture

a0
0=—Vdp+S,dT+N;du,— | —— dp, , (26
p+S, rduys m |71, Pm » (26)
rrroor T T T T T T T T
-1.1F
-1.2F E
T -1.3f ]
) 3 ]
N 3 E
= : Pmd” = 0.1 ]
-1.4F 3
_ kT/y = 0.28 _
-1.5( E
1 il 11J_L1|||1||AI|||||||||I||||l||||l||||:
0.0 0.1 0.2 0.3 0.4 0.5

ped

FIG. 1. An adsorption isotherm for the model system at
Pmd>=0.1 and kT /e;;=0.28. Note the van der Waals loop,
which should be replaced by a straight line joining the two coex-
istence densities.
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where V is the total system volume, p is the pressure of
the fluid, Sy is the entropy of the fluid, N, is the number
of fluid particles in the system, and Q is the grand po-
tential of the fluid. Holding the temperature and matrix
density p,, constant, the equal pressure requirement be-
comes
P

fPl Krdpr—(p,—pylus(py or p)=0, 27)
where p,; and p, are two fluid densities which have equal
chemical potential. The coexistence pair for a given iso-
therm is determined by trial and error using Eq. (27).
Adsorption isotherms at temperatures above a critical
value T, do not display liquid-vapor coexistence.

A series of adsorption isotherms for the system with
Pmd>=0.1is shown in Fig. 2. The kT /e, =0.309 curve
is the critical isotherm. For any given temperature below
this, there is coexistence at one particular value of the
chemical potential; the locus of coexistence densities is
indicated by a dotted line. This coexistence envelope is
perhaps the most interesting feature in the figure, and the
effects of matrix density on its shape can be seen in Fig. 3.
Note that the ordinate in Fig. 3 is temperature rather
than chemical potential. The solid curve is the result for
a pure fluid; it was calculated from Eq. (25) by setting
Pmd®=0 and using the highly accurate Carnahan-
Starling relationship [13] for Bu}ys. The other three
curves are results for different matrix densities, as indi-
cated in the figure. The calculation of coexistence points
was not carried out for total system densities
(pmd>+psd®) above 0.7, so that reasonable fluidlike
packing conditions were not exceeded.

-1.10
l
0_3/; /029
-1.12+ 0.309
0.33 0.28
-1.14f
0.27|
o -1.16F
Ay /il J
:.: -1.18—/” /[ /]
-1.20H
-1.22
-1.24
[ PSSR B
0.1 0.2 0.3 0.4 0.5
3
ped

FIG. 2. A series of isotherms for the model system at
Pmd?=0.1. Each curve is labeled with the corresponding value
of kT /e;;. The locus of coexistence densities is traced by the
dotted curve.
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FIG. 3. Portions of coexistence envelopes. Each curve is la-
beled with the corresponding value of the matrix density p,,d°.

VI. DISCUSSION

From a qualitative point of view, the results presented
in the last section are somewhat in accord with previous
experimental and theoretical studies. It is of interest to
attempt a comparison of our results with the experimen-
tal findings of Wong and Chan [2], in spite of the fact
that the interparticle potentials used here are quite simple
and were in no way designed to model *He in a silica
aerogel. For example, the characteristic pore size in our
model was approximately equal to (or less than) the size
of a fluid particle, while the structure of the aerogel was
found to be fractal in nature, exhibiting no dominant
pore length over the range of 20-5000 A [2]. Thus, the
model fluid considered here is much more severely
confined than the one in the experiments. For our
closest-matching model (p,,d*=0.1), we found a de-
crease of about 15% in critical temperature from the bulk
value, compared with the less than 1% decrease noted by
Wong and Chan. Wong and Chan also observed an in-
crease in critical density and a severe reduction in the
coexistence curve width; we found a decrease in critical
density and a more moderate shrinking of the envelope.

The phenomenon of decreasing critical temperature
with increasing confinement has been observed in studies
of single, geometrically ideal pores. For example, Peter-
son et al. [3] noted a decrease in critical temperature
with decreasing pore radius for fluids in cylindrical pores.
To make a comparison with their data, an average pore
radius was estimated at each of our matrix densities using
an expression introduced by Torquato and Avellaneda
[15]. A plot of critical temperature as a function of the
inverse of the pore radius is given in Fig. 4; the circles are
our results, while the triangles represent the density func-
tional theory results of Peterson et al. for Lennard-Jones
fluids in cylindrical pores. The question of agreement be-
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FIG. 4. Fluid critical temperature (reduced by the bulk criti-
cal temperature) as a function of the inverse of the dimension-
less pore radius r*. The circles are the results from this paper
for fluids in disordered matrices, with the average pore radius
estimated by the method of Rikvold and Stell [16]. The trian-
gles are the density functional theory results of Peterson et al.
for Lennard-Jones fluids in single cylindrical pores [3]. The
pore radius is dedimensionalized by d for the results of this
work and by the Lennard-Jones o parameter for the results of
Peterson et al.

tween the two sets of results is left unanswered as they
are clearly in different regimes, with our data in the limit
of an extremely confined fluid.

Maritan et al. [4] have recently suggested that the
asymmetric random-field Ising model (RFIM) is more ap-
propriate for the study of confined fluids than the conven-
tional symmetric one. In that model, an uncorrelated
fraction g of the lattice sites has a favorable adsorption
field, while the remainder of sites have an unfavorable
one. The favorable field is meant to represent the fluid-
solid interaction and the unfavorable one effectively tunes
the chemical potential of the fluid. They used the model
to predict a schematic phase diagram for a confined fluid
and suggested that the transition observed by Wong and
Chan [2] was from a “vapor plus wetting layer” phase to
a liquidlike phase. In a mean-field context at small ¢ and
large favorable field, their RFIM predicts that the critical
temperature of a lattice fluid with infinitely long ranged
interactions is given by

T.= Tc,bulk( 1—q), (28)

where T,y is the critical temperature of the bulk fluid.
It is of interest to attempt an extension of Eq. (28) to our
continuum model. A reasonable analogue of g for the
continuum model is the probability that a randomly in-
serted point lands inside the square well of a matrix parti-
cle. This probability can be calculated for a given matrix
density using an approximate expression developed by
Rikvold and Stell [16]). At p,,d°=0.1, Eq. (28) yields
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kT, /€ ff=0. 342, which is 11% larger than the actual
value calculated above (0.309). Agreement for higher
matrix densities is worse. These differences should not be
surprising if it is taken into account that the interactions
in our model are short ranged and that the adsorption
“sites” are highly correlated.

The asymmetric RFIM of Maritan et al. admits the
possibility that the critical exponent of the vapor plus
wetting layer to liquid phase transition has a bulklike
value, rather than the much smaller value predicted by
the symmetric RFIM; a bulklike exponent was indeed
found experimentally by Wong and Chan. Unfortunate-
ly, neither the wetting transition nor the value of the crit-
ical exponent can be probed in the mean-field approxima-
tion. The study of wetting in a continuum fluid-matrix
system requires calculation of the Ay, correlation func-
tion (i.e., a density profile), but such correlations are ig-
nored in the mean-field theory. The mean-field approxi-
mation also unavoidably results in the classical value of
for the critical exponent.

The mean-field theory has another important charac-
teristic, pertaining to the square-well model in particular.
It can be seen from Eq. (25) that the effects of imposed
chemical potential and of the fluid-matrix interactions
appear combined in the single variable

“f+531pmd3(x3m—1)efm . 29)
Thus, varying the €, /€, ratio does not alter the shape
of the coexistence envelope, but only its translational po-
sition with respect to the absolute chemical potential
coordinate. The possibly interesting competition between
fluid-fluid and fluid-solid attractive interactions is lost in
the mean-field approach; only the total value of the at-
tractive field matters.

There is still interesting behavior that can be explored
within the mean-field approximation, however. Changing
the fluid to matrix hard-core size ratio, for example, al-
ters the coexistence envelope in a nontrivial way. Vega,
Kaminsky, and Monson [10] have noted that in the limit
of very large matrix particles, the structure in a Madden-
Glandt system becomes very similar to that in the corre-
sponding equilibrium binary mixture; this may imply
similar thermodynamic behavior as well. The effect of
correlations in the matrix structure, an important issue,
could be explored by systematically varying 4,,, . Phase
coexistence of confined binary mixtures or in systems
with more realistic potentials may also be studied.

It should be noted that the mean-field approximation is
not inherent in our entire derivation; it may be avoided
by using Eq. (19) as a starting point. Of course, the
motivation for using a mean-field approach was that the
correlation functions in Eq. (19) could not always be ob-
tained in regions of interest for more complicated poten-
tials. In this case, the phase “regions of interest” refers
to the states inside the coexistence envelope. However,
Lomba [17] has shown that a substantial portion of the
envelope may be obtained without knowing the correla-
tion functions at all points inside the coexistence region.
Of course, an integration of the Gibbs-Duhem relation-
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ship through the region where the functions are not
known is impossible, so separate routes to the chemical
potential and pressure are required. It may be possible to
use Eq. (19) and the definitions of chemical potential and
pressure as partial derivatives of 4, to obtain a large part
of the coexistence envelope, without resorting to the
mean-field approximation. Another possible route to the
pressure is the correct form of the virial equation for a
fluid-matrix system, recently derived by Rosinberg,
Tarjus, and Stell [7].

In conclusion, a perturbation theory approach to the
calculation of the free energy of a fluid in a Madden-
Glandt system has been presented. The theory has been
applied to a simple interparticle potential model in a
mean-field context and vapor-liquid coexistence diagrams

for the confined fluid were obtained. It was found that
the critical temperature, critical density, and width of the
coexistence envelope all decreased with increasing matrix
concentration. These qualitative results are in partial
agreement with those from experiment, single pore mod-
els, and lattice studies. Extensions of the theory to other
potential models, with and without the mean-field ap-
proximation, are under way.
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